"We've identified a bacterial population that protects against food allergen sensitisation"

Gut bacteria that protect against food allergies offer probiotic promise

By Nathan Gray

- Last updated on GMT

"It's exciting because we know what the bacteria are; we have a way to intervene," said Professor Cathryn Nagler from the University of Chicago.
"It's exciting because we know what the bacteria are; we have a way to intervene," said Professor Cathryn Nagler from the University of Chicago.

Related tags Food allergies Immune system

Common gut bacteria from the class Clostridia could prevent sensitisation to allergens in food, according to new research that may pave the way for probiotic products aimed at battling food allergies and intolerances.

Writing in in the Proceedings of the National Academy of Sciences (PNAS)​, the team of US researchers revealed that the presence of Clostridia​, a common class of gut bacteria, may protect against food allergies by encouraging immune responses that prevent food allergens from entering the bloodstream.

The research, which was performed in mice, demonstrated that Clostridia​ can minimise allergen exposure and prevent sensitisation – a key step in the development of food allergies. The discovery points toward probiotic therapies for this so-far untreatable condition, said the University of Chicago team behind the research.

"We've identified a bacterial population that protects against food allergen sensitisation,"​ said Professor Cathryn Nagler from the University of Chicago. “The first step in getting sensitised to a food allergen is for it to get into your blood and be presented to your immune system. The presence of these bacteria regulates that process."

New paradigm?

While complex and largely undetermined factors such as genetics greatly affect whether individuals develop food allergies and how they manifest, the identification of a bacteria-induced barrier-protective response represents a new paradigm for preventing sensitisation to food. 

Clostridia​ bacteria are common in humans and represent a clear target for potential therapeutics that prevent or treat food allergies, said Nagler and her team – who are working to develop and test compositions that could be used for probiotic therapy and have filed a provisional patent.

"It's exciting because we know what the bacteria are; we have a way to intervene,"​ she said.

"There are of course no guarantees, but this is absolutely testable as a therapeutic against a disease for which there's nothing.”

Study details

To test how gut bacteria affect food allergies, Nagler and her team investigated the response to food allergens in mice. They exposed germ-free mice (born and raised in sterile conditions to have no resident microorganisms) and mice treated with antibiotics as new-borns (which significantly reduces gut bacteria) to peanut allergens.

Both groups of mice displayed a strong immunological response, producing significantly higher levels of antibodies against peanut allergens than mice with normal gut bacteria, the team revealed.

This sensitisation to food allergens could be reversed, however, by reintroducing a mix of Clostridia​ bacteria back into the mice, they said.

Reintroduction of another major group of intestinal bacteria, Bacteroides​, failed to alleviate sensitisation, indicating that Clostridia​ have a unique, protective role against food allergens, they added.

Closing the door

To identify the protective mechanism behind this finding, Nagler and her team studied cellular and molecular immune responses to bacteria in the gut.

Genetic analysis showed that Clostridia​ caused innate immune cells to produce high levels of interleukin-22 (IL-22), a signalling molecule known to decrease the permeability of the intestinal lining.

To confirm this theory, antibiotic-treated mice were either given IL-22 or were colonized with Clostridia​. When exposed to peanut allergens, mice in both conditions showed reduced allergen levels in their blood, compared to controls.

Allergen levels significantly increased again, however, after the mice were given antibodies that blocked the action of IL-22. Taken together, the findings indicate that Clostridia​-induced IL-22 prevents allergens from entering the bloodstream, said the team.

"Environmental stimuli such as antibiotic overuse, high fat diets, caesarean birth, removal of common pathogens and even formula feeding have affected the microbiota with which we've co-evolved,"​ commented Nagler. "Our results suggest this could contribute to the increasing susceptibility to food allergies."

Source: PNAS
Published online ahead of print, doi: 10.1073/pnas.1412008111
“Commensal bacteria protect against food allergen sensitization”
Authors: Andrew T. Stefka, Taylor Feehley, et al

Related products

3 comments

RE: Copyright

Posted by Mike,

Dear Nathan,

Thank you for your kind and prompt action. It really helped me getting to the paper which appeared ahead of print on the journal's web site but wasn't available at that time from PubMed.

Of course, we don't want to jeopardize your company's copyright protection - which shouldn't spread over the necessary boarders (as it happened with the mentioned publication).

Keep up great work - it is always a great pleasure reading your informative, timely and sharp publications.

Kind regards,
Mike

Report abuse

RE: Copyright

Posted by Nathan Gray,

Dear Mike,

Thanks for notifying us on this. The copyright protection on FoodNavigator unfortunately does not allow any content published to be copied. We are aware of the issues this can cause and make every effort to avoid potential issues by providing a link to studies and references. In general, this is in the form of a hyperlink to the full text where the DOI is listed at the bottomg of any science report.

Please accept my apologies that the link failed to appear in the case of the report above. I have now rectified the issue and you can click through to the original research.

Kind Regards,

Nathan Gray & the FoodNavigator tea,

Report abuse

Copyright conspiracy

Posted by Mike,

Yes, the finding is indeed very interesting and the report By Nathan Gray is timely and right on target.

HOWEVER: Isn't it ridiculous and somewhat questionable to copyright EVERYTHING in this report. For instance, I wanted to read the original article and was thinking of copying the article's DOI to then search for the original. One can imagine the level of my surprise when I found that the DOI is... copyright protected by... someone who is neither the author of the original paper nor the publisher of the article with the mentioned DOI! Now, I do understand the need for copyright protection. However, it must not be to this level of ridiculousness and must not include something which is not the property of either Mr. Gray or FoodNavigator. Am I wrong?

Report abuse

Follow us

Products

View more

Webinars